\(\int \cos ^3(c+d x) \cot (c+d x) (a+a \sin (c+d x)) \, dx\) [369]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F]
   Maxima [A] (verification not implemented)
   Giac [A] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 25, antiderivative size = 89 \[ \int \cos ^3(c+d x) \cot (c+d x) (a+a \sin (c+d x)) \, dx=\frac {3 a x}{8}-\frac {a \text {arctanh}(\cos (c+d x))}{d}+\frac {a \cos (c+d x)}{d}+\frac {a \cos ^3(c+d x)}{3 d}+\frac {3 a \cos (c+d x) \sin (c+d x)}{8 d}+\frac {a \cos ^3(c+d x) \sin (c+d x)}{4 d} \]

[Out]

3/8*a*x-a*arctanh(cos(d*x+c))/d+a*cos(d*x+c)/d+1/3*a*cos(d*x+c)^3/d+3/8*a*cos(d*x+c)*sin(d*x+c)/d+1/4*a*cos(d*
x+c)^3*sin(d*x+c)/d

Rubi [A] (verified)

Time = 0.07 (sec) , antiderivative size = 89, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.240, Rules used = {2917, 2672, 308, 212, 2715, 8} \[ \int \cos ^3(c+d x) \cot (c+d x) (a+a \sin (c+d x)) \, dx=-\frac {a \text {arctanh}(\cos (c+d x))}{d}+\frac {a \cos ^3(c+d x)}{3 d}+\frac {a \cos (c+d x)}{d}+\frac {a \sin (c+d x) \cos ^3(c+d x)}{4 d}+\frac {3 a \sin (c+d x) \cos (c+d x)}{8 d}+\frac {3 a x}{8} \]

[In]

Int[Cos[c + d*x]^3*Cot[c + d*x]*(a + a*Sin[c + d*x]),x]

[Out]

(3*a*x)/8 - (a*ArcTanh[Cos[c + d*x]])/d + (a*Cos[c + d*x])/d + (a*Cos[c + d*x]^3)/(3*d) + (3*a*Cos[c + d*x]*Si
n[c + d*x])/(8*d) + (a*Cos[c + d*x]^3*Sin[c + d*x])/(4*d)

Rule 8

Int[a_, x_Symbol] :> Simp[a*x, x] /; FreeQ[a, x]

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 308

Int[(x_)^(m_)/((a_) + (b_.)*(x_)^(n_)), x_Symbol] :> Int[PolynomialDivide[x^m, a + b*x^n, x], x] /; FreeQ[{a,
b}, x] && IGtQ[m, 0] && IGtQ[n, 0] && GtQ[m, 2*n - 1]

Rule 2672

Int[((a_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*tan[(e_.) + (f_.)*(x_)]^(n_.), x_Symbol] :> With[{ff = FreeFactors[S
in[e + f*x], x]}, Dist[ff/f, Subst[Int[(ff*x)^(m + n)/(a^2 - ff^2*x^2)^((n + 1)/2), x], x, a*(Sin[e + f*x]/ff)
], x]] /; FreeQ[{a, e, f, m}, x] && IntegerQ[(n + 1)/2]

Rule 2715

Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[(-b)*Cos[c + d*x]*((b*Sin[c + d*x])^(n - 1)/(d*n))
, x] + Dist[b^2*((n - 1)/n), Int[(b*Sin[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1] && Integ
erQ[2*n]

Rule 2917

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.)*((a_) + (b_.)*sin[(e_.) + (f_.)
*(x_)]), x_Symbol] :> Dist[a, Int[(g*Cos[e + f*x])^p*(d*Sin[e + f*x])^n, x], x] + Dist[b/d, Int[(g*Cos[e + f*x
])^p*(d*Sin[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f, g, n, p}, x]

Rubi steps \begin{align*} \text {integral}& = a \int \cos ^4(c+d x) \, dx+a \int \cos ^3(c+d x) \cot (c+d x) \, dx \\ & = \frac {a \cos ^3(c+d x) \sin (c+d x)}{4 d}+\frac {1}{4} (3 a) \int \cos ^2(c+d x) \, dx-\frac {a \text {Subst}\left (\int \frac {x^4}{1-x^2} \, dx,x,\cos (c+d x)\right )}{d} \\ & = \frac {3 a \cos (c+d x) \sin (c+d x)}{8 d}+\frac {a \cos ^3(c+d x) \sin (c+d x)}{4 d}+\frac {1}{8} (3 a) \int 1 \, dx-\frac {a \text {Subst}\left (\int \left (-1-x^2+\frac {1}{1-x^2}\right ) \, dx,x,\cos (c+d x)\right )}{d} \\ & = \frac {3 a x}{8}+\frac {a \cos (c+d x)}{d}+\frac {a \cos ^3(c+d x)}{3 d}+\frac {3 a \cos (c+d x) \sin (c+d x)}{8 d}+\frac {a \cos ^3(c+d x) \sin (c+d x)}{4 d}-\frac {a \text {Subst}\left (\int \frac {1}{1-x^2} \, dx,x,\cos (c+d x)\right )}{d} \\ & = \frac {3 a x}{8}-\frac {a \text {arctanh}(\cos (c+d x))}{d}+\frac {a \cos (c+d x)}{d}+\frac {a \cos ^3(c+d x)}{3 d}+\frac {3 a \cos (c+d x) \sin (c+d x)}{8 d}+\frac {a \cos ^3(c+d x) \sin (c+d x)}{4 d} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.21 (sec) , antiderivative size = 81, normalized size of antiderivative = 0.91 \[ \int \cos ^3(c+d x) \cot (c+d x) (a+a \sin (c+d x)) \, dx=\frac {a \left (120 \cos (c+d x)+8 \cos (3 (c+d x))+3 \left (12 c+12 d x-32 \log \left (\cos \left (\frac {1}{2} (c+d x)\right )\right )+32 \log \left (\sin \left (\frac {1}{2} (c+d x)\right )\right )+8 \sin (2 (c+d x))+\sin (4 (c+d x))\right )\right )}{96 d} \]

[In]

Integrate[Cos[c + d*x]^3*Cot[c + d*x]*(a + a*Sin[c + d*x]),x]

[Out]

(a*(120*Cos[c + d*x] + 8*Cos[3*(c + d*x)] + 3*(12*c + 12*d*x - 32*Log[Cos[(c + d*x)/2]] + 32*Log[Sin[(c + d*x)
/2]] + 8*Sin[2*(c + d*x)] + Sin[4*(c + d*x)])))/(96*d)

Maple [A] (verified)

Time = 0.20 (sec) , antiderivative size = 66, normalized size of antiderivative = 0.74

method result size
parallelrisch \(\frac {a \left (36 d x +120 \cos \left (d x +c \right )+3 \sin \left (4 d x +4 c \right )+24 \sin \left (2 d x +2 c \right )+8 \cos \left (3 d x +3 c \right )+96 \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right )+128\right )}{96 d}\) \(66\)
derivativedivides \(\frac {a \left (\frac {\left (\cos ^{3}\left (d x +c \right )+\frac {3 \cos \left (d x +c \right )}{2}\right ) \sin \left (d x +c \right )}{4}+\frac {3 d x}{8}+\frac {3 c}{8}\right )+a \left (\frac {\left (\cos ^{3}\left (d x +c \right )\right )}{3}+\cos \left (d x +c \right )+\ln \left (\csc \left (d x +c \right )-\cot \left (d x +c \right )\right )\right )}{d}\) \(76\)
default \(\frac {a \left (\frac {\left (\cos ^{3}\left (d x +c \right )+\frac {3 \cos \left (d x +c \right )}{2}\right ) \sin \left (d x +c \right )}{4}+\frac {3 d x}{8}+\frac {3 c}{8}\right )+a \left (\frac {\left (\cos ^{3}\left (d x +c \right )\right )}{3}+\cos \left (d x +c \right )+\ln \left (\csc \left (d x +c \right )-\cot \left (d x +c \right )\right )\right )}{d}\) \(76\)
risch \(\frac {3 a x}{8}+\frac {5 a \,{\mathrm e}^{i \left (d x +c \right )}}{8 d}+\frac {5 a \,{\mathrm e}^{-i \left (d x +c \right )}}{8 d}-\frac {a \ln \left ({\mathrm e}^{i \left (d x +c \right )}+1\right )}{d}+\frac {a \ln \left ({\mathrm e}^{i \left (d x +c \right )}-1\right )}{d}+\frac {a \sin \left (4 d x +4 c \right )}{32 d}+\frac {a \cos \left (3 d x +3 c \right )}{12 d}+\frac {a \sin \left (2 d x +2 c \right )}{4 d}\) \(116\)
norman \(\frac {\frac {3 a x}{8}+\frac {8 a}{3 d}+\frac {5 a \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{4 d}-\frac {3 a \left (\tan ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{4 d}+\frac {3 a \left (\tan ^{5}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{4 d}-\frac {5 a \left (\tan ^{7}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{4 d}+\frac {3 a x \left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{2}+\frac {9 a x \left (\tan ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{4}+\frac {3 a x \left (\tan ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{2}+\frac {3 a x \left (\tan ^{8}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{8}+\frac {4 a \left (\tan ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d}+\frac {8 a \left (\tan ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d}+\frac {20 a \left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{3 d}}{\left (1+\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )^{4}}+\frac {a \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d}\) \(221\)

[In]

int(cos(d*x+c)^4*csc(d*x+c)*(a+a*sin(d*x+c)),x,method=_RETURNVERBOSE)

[Out]

1/96*a*(36*d*x+120*cos(d*x+c)+3*sin(4*d*x+4*c)+24*sin(2*d*x+2*c)+8*cos(3*d*x+3*c)+96*ln(tan(1/2*d*x+1/2*c))+12
8)/d

Fricas [A] (verification not implemented)

none

Time = 0.27 (sec) , antiderivative size = 88, normalized size of antiderivative = 0.99 \[ \int \cos ^3(c+d x) \cot (c+d x) (a+a \sin (c+d x)) \, dx=\frac {8 \, a \cos \left (d x + c\right )^{3} + 9 \, a d x + 24 \, a \cos \left (d x + c\right ) - 12 \, a \log \left (\frac {1}{2} \, \cos \left (d x + c\right ) + \frac {1}{2}\right ) + 12 \, a \log \left (-\frac {1}{2} \, \cos \left (d x + c\right ) + \frac {1}{2}\right ) + 3 \, {\left (2 \, a \cos \left (d x + c\right )^{3} + 3 \, a \cos \left (d x + c\right )\right )} \sin \left (d x + c\right )}{24 \, d} \]

[In]

integrate(cos(d*x+c)^4*csc(d*x+c)*(a+a*sin(d*x+c)),x, algorithm="fricas")

[Out]

1/24*(8*a*cos(d*x + c)^3 + 9*a*d*x + 24*a*cos(d*x + c) - 12*a*log(1/2*cos(d*x + c) + 1/2) + 12*a*log(-1/2*cos(
d*x + c) + 1/2) + 3*(2*a*cos(d*x + c)^3 + 3*a*cos(d*x + c))*sin(d*x + c))/d

Sympy [F]

\[ \int \cos ^3(c+d x) \cot (c+d x) (a+a \sin (c+d x)) \, dx=a \left (\int \cos ^{4}{\left (c + d x \right )} \csc {\left (c + d x \right )}\, dx + \int \sin {\left (c + d x \right )} \cos ^{4}{\left (c + d x \right )} \csc {\left (c + d x \right )}\, dx\right ) \]

[In]

integrate(cos(d*x+c)**4*csc(d*x+c)*(a+a*sin(d*x+c)),x)

[Out]

a*(Integral(cos(c + d*x)**4*csc(c + d*x), x) + Integral(sin(c + d*x)*cos(c + d*x)**4*csc(c + d*x), x))

Maxima [A] (verification not implemented)

none

Time = 0.21 (sec) , antiderivative size = 81, normalized size of antiderivative = 0.91 \[ \int \cos ^3(c+d x) \cot (c+d x) (a+a \sin (c+d x)) \, dx=\frac {16 \, {\left (2 \, \cos \left (d x + c\right )^{3} + 6 \, \cos \left (d x + c\right ) - 3 \, \log \left (\cos \left (d x + c\right ) + 1\right ) + 3 \, \log \left (\cos \left (d x + c\right ) - 1\right )\right )} a + 3 \, {\left (12 \, d x + 12 \, c + \sin \left (4 \, d x + 4 \, c\right ) + 8 \, \sin \left (2 \, d x + 2 \, c\right )\right )} a}{96 \, d} \]

[In]

integrate(cos(d*x+c)^4*csc(d*x+c)*(a+a*sin(d*x+c)),x, algorithm="maxima")

[Out]

1/96*(16*(2*cos(d*x + c)^3 + 6*cos(d*x + c) - 3*log(cos(d*x + c) + 1) + 3*log(cos(d*x + c) - 1))*a + 3*(12*d*x
 + 12*c + sin(4*d*x + 4*c) + 8*sin(2*d*x + 2*c))*a)/d

Giac [A] (verification not implemented)

none

Time = 0.30 (sec) , antiderivative size = 145, normalized size of antiderivative = 1.63 \[ \int \cos ^3(c+d x) \cot (c+d x) (a+a \sin (c+d x)) \, dx=\frac {9 \, {\left (d x + c\right )} a + 24 \, a \log \left ({\left | \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) \right |}\right ) - \frac {2 \, {\left (15 \, a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{7} - 48 \, a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{6} - 9 \, a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{5} - 96 \, a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{4} + 9 \, a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} - 80 \, a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - 15 \, a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - 32 \, a\right )}}{{\left (\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + 1\right )}^{4}}}{24 \, d} \]

[In]

integrate(cos(d*x+c)^4*csc(d*x+c)*(a+a*sin(d*x+c)),x, algorithm="giac")

[Out]

1/24*(9*(d*x + c)*a + 24*a*log(abs(tan(1/2*d*x + 1/2*c))) - 2*(15*a*tan(1/2*d*x + 1/2*c)^7 - 48*a*tan(1/2*d*x
+ 1/2*c)^6 - 9*a*tan(1/2*d*x + 1/2*c)^5 - 96*a*tan(1/2*d*x + 1/2*c)^4 + 9*a*tan(1/2*d*x + 1/2*c)^3 - 80*a*tan(
1/2*d*x + 1/2*c)^2 - 15*a*tan(1/2*d*x + 1/2*c) - 32*a)/(tan(1/2*d*x + 1/2*c)^2 + 1)^4)/d

Mupad [B] (verification not implemented)

Time = 11.38 (sec) , antiderivative size = 245, normalized size of antiderivative = 2.75 \[ \int \cos ^3(c+d x) \cot (c+d x) (a+a \sin (c+d x)) \, dx=\frac {-\frac {5\,a\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^7}{4}+4\,a\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^6+\frac {3\,a\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^5}{4}+8\,a\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^4-\frac {3\,a\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^3}{4}+\frac {20\,a\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2}{3}+\frac {5\,a\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}{4}+\frac {8\,a}{3}}{d\,\left ({\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^8+4\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^6+6\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^4+4\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2+1\right )}+\frac {a\,\ln \left (\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )\right )}{d}+\frac {3\,a\,\mathrm {atan}\left (\frac {9\,a^2}{16\,\left (\frac {3\,a^2}{2}-\frac {9\,a^2\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}{16}\right )}+\frac {3\,a^2\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}{2\,\left (\frac {3\,a^2}{2}-\frac {9\,a^2\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}{16}\right )}\right )}{4\,d} \]

[In]

int((cos(c + d*x)^4*(a + a*sin(c + d*x)))/sin(c + d*x),x)

[Out]

((8*a)/3 + (5*a*tan(c/2 + (d*x)/2))/4 + (20*a*tan(c/2 + (d*x)/2)^2)/3 - (3*a*tan(c/2 + (d*x)/2)^3)/4 + 8*a*tan
(c/2 + (d*x)/2)^4 + (3*a*tan(c/2 + (d*x)/2)^5)/4 + 4*a*tan(c/2 + (d*x)/2)^6 - (5*a*tan(c/2 + (d*x)/2)^7)/4)/(d
*(4*tan(c/2 + (d*x)/2)^2 + 6*tan(c/2 + (d*x)/2)^4 + 4*tan(c/2 + (d*x)/2)^6 + tan(c/2 + (d*x)/2)^8 + 1)) + (a*l
og(tan(c/2 + (d*x)/2)))/d + (3*a*atan((9*a^2)/(16*((3*a^2)/2 - (9*a^2*tan(c/2 + (d*x)/2))/16)) + (3*a^2*tan(c/
2 + (d*x)/2))/(2*((3*a^2)/2 - (9*a^2*tan(c/2 + (d*x)/2))/16))))/(4*d)